Friday, July 6, 2012

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

 

In the absence of perfusable vascular networks, three-dimensional (3D) engineered tissues densely populated with cells quickly develop a necrotic core1. Yet the lack of a general approach to rapidly construct such networks remains a major challenge for 3D tissue culture2, 3, 4. Here, we printed rigid 3D filament networks of carbohydrate glass, and used them as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks that could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow. Because this simple vascular casting approach allows independent control of network geometry, endothelialization and extravascular tissue, it is compatible with a wide variety of cell types, synthetic and natural extracellular matrices, and crosslinking strategies. We also demonstrated that the perfused vascular channels sustained the metabolic function of primary rat hepatocytes in engineered tissue constructs that otherwise exhibited suppressed function in their core.

 

Sunday, June 10, 2012


Autonomous Motion of Metallic Microrods Propelled by Ultrasound


Autonomously moving micro-objects, or micromotors, have attracted the attention of the scientific community over the past decade, but the incompatibility of phoretic motors with solutions of high ionic strength and the use of toxic fuels have limited their applications in biologically relevant media. In this letter we demonstrate that ultrasonic standing waves in the MHz frequency range can levitate, propel, rotate, align, and assemble metallic microrods (2 μm long and 330 nm diameter) in water as well as in solutions of high ionic strength. Metallic rods levitated to the midpoint plane of a cylindrical cell when the ultrasonic frequency was tuned to create a vertical standing wave. Fast axial motion of metallic microrods at 200 μm/s was observed at the resonant frequency using continuous or pulsed ultrasound. Segmented metal rods (AuRu or AuPt) were propelled unidirectionally with one end (Ru or Pt, respectively) consistently forward. A self-acoustophoresis mechanism based on the shape asymmetry of the metallic rods is proposed to explain this axial propulsion. Metallic rods also aligned and self-assembled into long spinning chains, which in the case of bimetallic rods had a head-to-tail alternating structure. These chains formed ring or streak patterns in the levitation plane. The diameter or distance between streaks was roughly half the wavelength of the ultrasonic excitation. The ultrasonically driven movement of metallic rods was insensitive to the addition of salt to the solution, opening the possibility of driving and controlling metallic micromotors in biologically relevant media using ultrasound.

Wednesday, June 6, 2012

Controlled Orientation and Alignment in Films of Single-Walled Carbon Nanotubes Using Inkjet Printing



An inkjet printing procedure for depositing films of carbon nanotubes (CNTs) that exhibit a very high degree of long-range mutual alignment as well as a controlled orientation with respect to the printed geometry is presented. CNT self-assembly was induced by the intrinsic lyotropic liquid crystallinity of CNT suspensions. Sufficient concentrations are reached by matching the inkjet deposition rate to the numerically modeled local evaporation rate of the printed feature and enable the CNT suspension to be printed using standard inkjet printing. Surface alignment was verified using scanning electron microscopy (SEM) and polarized light microscopy. In addition, the bulk morphology was investigated and found to be composed of stacked planar layers that did not necessarily have the same long-range orientation found on the surface. The bulk morphology was characterized by removing layers through an elastomeric peeling process and by observing cross sections of the films using SEM. CNT concentration and length were spanned experimentally, and it was found that very short and very long CNTs as well as low concentration suspensions did not yield long-range alignment.

Tuesday, June 5, 2012

In silico screening of carbon-capture materials

Parasitic energy as a function of the Henry coefficient of CO2 for all silica zeolite structures.

One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60–80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30–40% compared with near-term technologies.

Monday, June 4, 2012


Gel-Based Self-Propelling Particles Get Programmed to Dance


We present a class of gel-based self-propelling particles moving by the Marangoni effect in an oscillatory mode. The particles are made of an ethanol-infused polyacrylamide hydrogel contained in plastic tubing. These gel boats floating on the water surface exhibit periodic propulsion for several hours. The release of ethanol from the hydrogel takes place beneath the liquid surface. The released ethanol rises to the air-water interface by buoyancy, and generates a self-sustained cycle of surface tension gradient driven motion. The disruption of the ethanol flux to the surface by the bulk flows around the moving particle results in their pulsating motion. The pulse interval and the distance propelled in a pulse by these gel floaters were measured and approximated by simple expressions based on the rate of ethanol mass-transfer through and out of the hydrogel. This allowed us to design a multitude of particles performing periodic steps in different directions or at different angles of rotation, travelling in complex preprogrammed trajectories on the surface of the liquid. Similar gel-based self-propelling floaters can find applications as mixers and cargo carriers in lab-on-a-chip devices, and in various platforms for sensing and processing at the microscale.
Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension


Control of fluid dynamics at micrometer scale is essential to emulsion science and materials design, which is ubiquitous in everyday life and frequently encountered in industrial applications. Most studies on multiphase flow focus on oil-water systems with substantial interfacial tension. Advances in microfluidics have enabled the study of multiphase flow with more complex dynamics. Here, we show that the evolution of the interface in a jet surrounded by a co-flowing continuous phase with an ultra-low interfacial tension presents new opportunities to the control of flow morphologies. The introduction of a harmonic perturbation to the dispersed phase leads to the formation of interfaces with unique shapes. The periodic structures can be tuned by controlling the fluid flow rates and the input perturbation; this demonstrates the importance of the inertial effects in flow control at ultra-low interfacial tension. Our works provide new insight into microfluidic flows at ultra-low interfacial tension and their potential applications.


Saturday, May 26, 2012

Interfacial viscoelasticity controls buckling, wrinkling and arrest in emulsion drops undergoing mass transfer


Contrary to the notion that ‘oil and water do not mix’, many oils possess a residual diffusive mobility through water, causing the drop sizes in oil-in-water emulsions to slowly evolve with time. Liquid interfaces are therefore typically stabilized with polymeric or particulate emulsifiers. Upon adsorption, these may induce strong, localized viscoelasticity in the interfacial region. Here, we show that shrinkage of oil drops due to bulk mass transfer may render such adsorption layers mechanically unstable, causing them to buckle, crumple and, finally, to attain a stationary shape and size. We demonstrate using two types of model interfaces that this only occurs if the adsorption layer has a high interfacial shear elasticity. This is typically the case for adsorbed layers that are cross-linked or ‘jammed’. Conversely, interfacial compression elasticity alone is a poor predictor of interface buckling or arrest. These results provide a new perspective on the role of interfacial rheology for compositional ripening in emulsions. Moreover, they directly affect a variety of applications, including the rapid screening of amphiphilic biopolymers such as the Acacia gum or the octenyl succinic anhydride modified starch used here, the interpretation of light scattering data for size measurements of emulsion drops, or the formulation of delivery systems for encapsulation and release of drugs and volatiles.