Monday, April 30, 2012

Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients


We investigated driven crystal formation events in thin layers of sedimented colloidal particles under low salt conditions. Using optical microscopy, we observe particles in a thermodynamically stable colloidal fluid to move radially converging towards cation exchange resin fragments acting as seed particles. When the local particle concentration has become sufficiently large, subsequently crystallization occurs. Brownian dynamics simulations of a 2D system of purely repulsive point-like particles exposed to an attractive potential, yield strikingly similar scenarios, and kinetics of accumulation and micro-structure formation. This offers the possibility of flexibly designing and manufacturing thin colloidal crystals at controlled positions and thus to obtain specific micro-structures not accessible by conventional approaches. We further demonstrate that particle motion is correlated with the existence of a gradient in electrolyte concentration due to the release of electrolyte by the seeds.

Sunday, April 29, 2012

Re-entrant melting as a design principle for DNA-coated colloids


Colloids functionalized with DNA hold great promise as building blocks for complex self-assembling structures. However, the practical use of DNA-coated colloids (DNACCs) has been limited by the narrowness of the temperature window where the target structures are both thermodynamically stable and kinetically accessible1, 2, 3, 4, 5. Here we propose a strategy to design DNACCs, whereby the colloidal suspensions crystallize on cooling and then melt on further cooling. In a phase diagram with such a re-entrant melting, kinetic trapping of the system in non-target structures should be strongly suppressed. We present model calculations and simulations that show that real DNA sequences exist that should bestow this unusual phase behaviour on suitably functionalized colloidal suspensions. We present our results for binary systems, but the concepts that we develop apply to multicomponent systems and should therefore open the way towards the design of truly complex self-assembling colloidal structures.

Paper-Based, Capacitive Touch Pads

Thumbnail image of graphical abstract

Metallized paper is patterned to create touch pads of arrayed buttons that are sensitive to contact with both bare and gloved fingers. The paper-based keypad detects the change in capacitance associated with the touch of a finger to one of its buttons. Mounted on an alarmed cardboard box, the keypad requires the appropriate sequence of touches to disarm the system.

 

Friday, April 27, 2012

Rapidly in situ forming polyphosphoester-based hydrogels for injectable drug delivery carriers


In situ forming hydrogels allow the modulation of physicochemical properties and are providing new opportunities for biomedical applications. Here, the preparation and characterization of a series of rapidly in situ forming and pH-responsive hydrogels with different crosslinking degrees are reported, which were achieved by accelerated free radical copolymerization of polyphosphoester-based macrocrosslinker and 2-(dimethylamino)ethyl methacrylate (DMAEMA) monomer. The hydrogel formation can be completed very quickly under mild conditions, ranging from several to tens of minutes with varying concentrations of components. The polyphosphoester-based macrocrosslinker was synthesized via a combination of ring-opening polymerization and post-polymerization modification, and it was characterized by 1H NMR, 31P NMR, and GPC measurements. The sol–gel transition was monitored by dynamic time sweep rheological analysis. Moreover, the swelling kinetics, interior morphology, pH-responsive property, in vitro cytotoxicity and drug release of these hydrogels were characterized. The results indicate that these hydrogels show great potential as injectable drug delivery system.

Monday, April 23, 2012

Biotemplated Synthesis of Perovskite Nanomaterials for Solar Energy Conversion

 
A synthetic method of using genetically engineered M13 virus to mineralize perovskite nanomaterials, particularly strontium titanate (STO) and bismuth ferrite (BFO), is presented. Genetically engineered viruses provide effective templates for perovskite nanomaterials. The virus-templated nanocrystals are small in size, highly crystalline, and show photocatalytic and photovoltaic properties.
Pattern Formation in Nature: Physical Constraints and Self-Organising Characteristics


Pattern formations are apparent in natural systems ranging from clouds to animal markings, and from sand dunes to shells of microscopic marine organisms. Despite the astonishing range and variety of such structures, many have comparable features. In this article, Philip Ball reviews some of the common patterns found in nature. He explains how they are typically formed through simple, local interactions between many components of a system – a form of physical computation that gives rise to self-organisation and emergent structures and behaviours.
Design to Self-Assembly


The increasing power of design software, the widespread availability of digital fabrication and growing complexity of our built environment are in stark contrast to the inefficient techniques that currently plague the construction industry. Today's processes of assembly can be fundamentally re-imagined by looking at biological systems that are building structures with far more complexity, information capacity and assembly instructions than even the most advanced structures possible with current technologies. Skylar Tibbits explains that the key ingredient embedded within these natural systems is self-assembly. He outlines four principles for designing systems that build themselves, and shows a number of projects that demonstrate first steps towards this new mode of architectural production.
Programming Matter


A direct parallel can be made between the Modernist separation of form, structure and material and the more recent tripartite division in digital processes of modelling, analysis and fabrication, which has resulted in the predominance of geometric-driven form-generation. Today, though, design culture is experiencing a shift to a new level of material awareness. Inspired by nature's strategies where form-generation is driven by maximal performance with minimal resources through local material property variation, Neri Oxman investigates a novel design approach to digital fabrication that offers the potential to program physical matter.

Sunday, April 22, 2012

Monodisperse Gas-Filled Microparticles from Reactions in Double Emulsions


We present a strategy for preparing size-controlled gas-filled microparticles using two aqueous components that chemically react to produce the gas. We use a dual-bore microfluidic device to isolate the reactants of two gas-producing reactions until they are encapsulated in the outer droplet. The reactants in the monodisperse droplets merge and produce the gas bubbles, which are stabilized with a surfactant and form the core of the microparticles. The number and size of the generated gas bubbles are governed by the gas-forming reaction used. Our versatile strategy can be applied to a wide range of gas-producing reactions.


Zipping Effect on Omniphobic Surfaces for Controlled Deposition of Minute Amounts of Fluid or Colloids


When a drop sits on a highly liquid-repellent surface (super-hydrophobic or super-omniphobic) made of periodic micrometer-sized posts, its contact-line can recede with very weak mechanical retention providing that the liquid stays on top of the microsized posts. Occurring in both sliding and evaporation processes, the achievement of low-contact-angle hysteresis (low retention) is required for discrete microfluidic applications involving liquid motion or self-cleaning; however, careful examination shows that during receding, a minute amount of liquid is left on top of the posts lying at the receding edge of the drop. For the first time, the heterogeneities of these deposits along the drop-receding contact-line are underlined. Both nonvolatile liquid and particle-laden water are used to quantitatively characterize what rules the volume distribution of deposited liquid. The experiments suggest that the dynamics of the liquid de-pinning cascade is likely to select the volume left on a specific post, involving the pinch-off and detachment of a liquid bridge. In an applied prospective, this phenomenon dismisses such surfaces for self-cleaning purposes, but offers an original way to deposit controlled amounts of liquid and (bio)-particles at well-targeted locations.
Carbon Nanomaterials for Advanced Energy Conversion and Storage






It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field.

Friday, April 20, 2012


Reductively Responsive siRNA-Conjugated Hydrogel Nanoparticles for Gene Silencing

 

A critical need still remains for effective delivery of RNA interference (RNAi) therapeutics to target tissues and cells. Self-assembled lipid- and polymer-based systems have been most extensively explored for transfection with small interfering RNA (siRNA) in liver and cancer therapies. Safety and compatibility of materials implemented in delivery systems must be ensured to maximize therapeutic indices. Hydrogel nanoparticles of defined dimensions and compositions, prepared via a particle molding process that is a unique off-shoot of soft lithography known as particle replication in nonwetting templates (PRINT), were explored in these studies as delivery vectors. Initially, siRNA was encapsulated in particles through electrostatic association and physical entrapment. Dose-dependent gene silencing was elicited by PEGylated hydrogels at low siRNA doses without cytotoxicity. To prevent disassociation of cargo from particles after systemic administration or during postfabrication processing for surface functionalization, a polymerizable siRNA pro-drug conjugate with a degradable, disulfide linkage was prepared. Triggered release of siRNA from the pro-drug hydrogels was observed under a reducing environment while cargo retention and integrity were maintained under physiological conditions. Gene silencing efficiency and cytocompatibility were optimized by screening the amine content of the particles. When appropriate control siRNA cargos were loaded into hydrogels, gene knockdown was only encountered for hydrogels containing releasable, target-specific siRNAs, accompanied by minimal cell death. Further investigation into shape, size, and surface decoration of siRNA-conjugated hydrogels should enable efficacious targeted in vivo RNAi therapies.

Multifunctional Nanoparticle-Loaded Spherical and Wormlike Micelles Formed by Interfacial Instabilities

Hybrid spherical and wormlike amphiphilic block copolymer micelles are formed through evaporation-induced interfacial instabilities of emulsion droplets, allowing for incorporation of pre-synthesized hydrophobic inorganic nanoparticles within the micelle cores, as well as co-encapsulation of different nanoparticles. This encapsulation behavior is largely insensitive to particle surface chemistry, shape, and size, thus providing a versatile route to fabricate multifunctional micelles.
Diblock-Copolymer-Coated Water- and Oil-Repellent Cotton Fabrics


A diblock copolymer consisting of a sol–gel-forming block and a fluorinated block was used to coat cotton fabrics, yielding textiles that were highly oil- and water-repellent. The coating procedure was simple. At grafted polymer amounts of as low as 1.0 wt %, water, diodomethane, hexadecane, cooking oil, and pump oil all had contact angles surpassing 150° on the coated cotton fabrics and were readily rolled. The liquids were not drawn into the interfiber space by the coated fabrics. Rather, droplets of the nonvolatile liquids such as cooking oil retained their beaded shapes for months with minimal contact angle changes. When forced into water, the coated fabrics trapped an air or plastron layer and this plastron layer was stable for months. In addition, the coating had high stability against simulated washing, and the mechanical properties were essentially identical to those of uncoated cotton fabrics.





Assembly and directed orientation of anisotropic particles with an external ac electric field in a range from 1 kHz to 2 MHz were studied for asymmetric composite dumbbells incorporating a silica, titania, or titania/silica (titania:silica = 75:25 vol %) sphere. The asymmetric composite dumbbells, which were composed of a polymethylmethacrylate (PMMA)-coated sphere (core–shell part) and a polystyrene (PSt) lobe, were synthesized with a soap-free emulsion polymerization to prepare PMMA-coated inorganic spheres and another soap-free emulsion polymerization to form a polystyrene (PSt) lobe from the PMMA-coated inorganic spheres. The composite dumbbells dispersed in water were directly observed with optical microscopy. The dumbbells incorporating a silica sphere oriented parallel to an electric field in the whole frequency range and they formed a pearl chain structure at a high frequency of 2 MHz. The titania-incorporated dumbbells formed chain structures, in which they contacted their core–shell parts and oriented perpendicularly to a low-frequency (kHz) field, whereas they oriented parallel to a high-frequency (MHz) field. Since the alignment of dumbbells in the chains depends not only on the interparticle forces but also on the torque that the induced dipoles in the dumbbells experience in the electric field, the orientation of dumbbells perpendicular to the electric field was the case dominated by the interparticle force, whereas the other orientation was the case dominated by the torque. The present experiments show that the incorporation of inorganic dumbbells is an effective way to control the assembled structure and orientation with an electric field.
Superparamagnetic cellulose fiber networks via nanocomposite functionalization


We present a simple and cost-effective method for rendering networks of cellulose fibers, such as paper, fabrics or membranes, superparamagnetic by impregnating the individual fibers with a reactive acrylic monomer. The cellulose fibers are wetted by a cyanoacrylate monomer solution containing superparamagnetic manganese ferrite colloidal nanoparticles. Upon moisture initiated polymerization of the monomer on the fiber surfaces, a thin nanocomposite shell forms around each fiber. The nanocomposite coating renders the cellulose fibers water repellent and magnetically responsive. Magnetic and microscopy studies prove that the amount of the entrapped nanoparticles in the nanocomposite shell is fully controllable, and that the magnetic response is directly proportional to this amount. A broad range of applications can be envisioned for waterproof magnetic cellulose materials (such as magnetic paper/tissues) obtained by such a simple yet highly efficient method.

Wednesday, April 18, 2012

Polymer/nucleotide droplets as bio-inspired functional micro-compartments


Using a range of physical methods, we describe the formation, structure, stability, physical properties and uptake behavior of condensed liquid micro-droplets prepared by electrostatically induced complexation of poly(diallyldimethylammonium) chloride (PDDA) and adenosine triphosphate (ATP) in water. Depending on the PDDA monomer: ATP molar ratio, positively charged or charge-neutral droplets are produced spontaneously by simple mixing. The former are typically 60–600 nm in mean size and stable with respect to sedimentation up to temperatures of 85 °C, whilst the latter grow into droplets several tens of micrometres in diameter that coalesce into a macroscopic coacervate phase. Coacervation is inhibited at pH values less than 3 and at high ionic strength, confirming the importance of charge interactions in droplet formation and stability. The droplet interior is structurally homogeneous with no surrounding membrane, comprises dynamically fluctuating domains of partially desolvated polymer/nucleotide complexes, and has a dielectric constant considerably lower than water. As a consequence, dye molecules, porphyrin macrocycles, inorganic nanoparticles or globular proteins can be sequestered from the external water phase into the droplets to produce PDDA/ATP droplets comprising supramolecular J-aggregate nanostructures, magnetically responsive deformable fluids, or soft compartments with potential storage and release properties.
Microrheology of biomaterial hydrogelators


Microrheology uses the motion of dispersed colloidal probe particles to measure the viscosity or viscoelastic moduli of soft materials. The distinct advantages of microrheology include small sample volume requirements, access to a large range of time scales for the dynamic response and short acquisition times. These advantages make microrheology important for studies of biomaterial hydrogelators. Recent advances have enabled the precise characterization of hydrogelator sol–gel transitions, measurements of rare and scarce materials and high-throughput screening of hydrogel rheology over a large composition space. In this review, we focus on multiple particle tracking microrheology, including the considerations that define its operating regimes and its recent applications. Those interested in biomaterial rheology will find these methods as accessible as bulk rheological measurements and straightforward to implement in their own work.
Microfluidic synthesis of advanced microparticles for encapsulation and controlled release


We describe droplet microfluidic strategies used to fabricate advanced microparticles that are useful structures for the encapsulation and release of actives; these strategies can be further developed to produce microparticles for advanced drug delivery applications. Microfluidics enables exquisite control in the fabrication of polymer vesicles and thermosensitive microgels from single and higher-order multiple emulsion templates. The strategies used to create the diversity of microparticle structures described in this review, coupled with the scalability of microfluidics, will enable fabrication of large quantities of novel microparticle structures that have potential uses in controlled drug release applications.

Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device



This article presents a simple and novel approach to prepare monodispersed gas-in-oil-in-water (G/O/W) and gas-in-water-in-oil (G/W/O) double-emulsions in the same dual-coaxial microfluidic device. The effects of three phase flow rates on the sizes of microbubbles and droplets and the number of the encapsulated microbubbles were systematically studied. We successfully synthesized two different types of gas/liquid/liquid (G/L/L) double emulsions with different inner structures in the same geometry by adjusting the flow rates sequentially. Mathematical models were developed to predict the size and structures of the double emulsions. This simple approach gives a new idea for preparing hollow and porous microspheres with microbubbles as the direct core/pores templates.

Tuesday, April 17, 2012

Aggregation and Interaction of Cationic Nanoparticles on Bacterial Surfaces

Cationic monolayer-protected gold nanoparticles (AuNPs) with sizes of 6 or 2 nm interact with the cell membranes of Escherichia coli (Gram−) and Bacillus subtilis (Gram+), resulting in the formation of strikingly distinct AuNP surface aggregation patterns or lysis depending upon the size of the AuNPs. The aggregation phenomena were investigated by transmission electron microscopy and UV–vis spectroscopy. Upon proteolytic treatment of the bacteria, the distinct aggregation patterns disappeared.



Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure: From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds


Exploiting Nanoroughness on Holographically Patterned Three-Dimensional Photonic Crystals


The fabrication of three-dimensional (3D) diamond photonic crystals with controllable nanoroughness (≤120 nm) on the surface from epoxy-functionalized cyclohexyl polyhedral oligomeric silsesquioxanes (POSS) is reported. The nanoroughness is generated on the 3D network due to microphase separation of the polymer chain segments in a nonsolvent during the rinsing step in holographic lithography process. The degree of roughness can be tuned by the crosslinking density of the polymer network, which is dependent on the loading of photoacid generators, the exposure dosage, and the choice of developer and rinsing solvent. Because the nanoroughness size is small, it does not affect the photonic band gap position of the photonic crystal in the infrared region. The combination of periodic microstructure and nanoroughness, however, offers new opportunities to realize superhydrophobicity and enhanced dye adsorption in addition to the photon management in the 3D photonic crystal.

A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering


Conducting polymers (CPs) have exciting potential as scaffolds for tissue engineering, typically applied in regenerative medicine applications. In particular, the electrical properties of CPs has been shown to enhance nerve and muscle cell growth and regeneration. Hydrogels are particularly suitable candidates as scaffolds for tissue engineering because of their hydrated nature, their biocompatibility, and their tissue-like mechanical properties. This study reports the development of the first single component CP hydrogel that is shown to combine both electro-properties and hydrogel characteristics. Poly(3-thiopheneacetic acid) hydrogels were fabricated by covalently crosslinking the polymer with 1,1′-carbonyldiimidazole (CDI). Their swelling behavior was assessed and shown to display remarkable swelling capabilities (swelling ratios up to 850%). The mechanical properties of the networks were characterized as a function of the crosslinking density and were found to be comparable to those of muscle tissue. Hydrogels were found to be electroactive and conductive at physiological pH. Fibroblast and myoblast cells cultured on the hydrogel substrates were shown to adhere and proliferate. This is the first time that the potential of a single component CP hydrogel has been demonstrated for cell growth, opening the way for the development of new tissue engineering scaffolds.
Triangular Elastomeric Stamps for Optical Applications: Near-Field Phase Shift Photolithography, 3D Proximity Field Patterning, Embossed Antireflective Coatings, and SERS Sensing



The use of a decal transfer lithography technique to fabricate elastomeric stamps with triangular cross-sections, specifically triangular prisms and cones, is described. These stamps are used in demonstrations for several prototypical optical applications, including the fabrication of multiheight 3D photoresist patterns with near zero-width features using near-field phase shift lithography, fabrication of periodic porous polymer structures by maskless proximity field nanopatterning, embossing thin-film antireflection coatings for improved device performance, and efficient fabrication of substrates for surface-enhanced Raman spectroscopic sensing. The applications illustrate the utility of the triangular poly(dimethylsiloxane) decals for a wide variety of optics-centric applications, particularly those that exploit the ability of the designed geometries and materials combinations to manipulate light–matter interactions in a predictable and controllable manner.
Flexible, Angle-Independent, Structural Color Reflectors Inspired by Morpho Butterfly Wings




Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties.
A Self-healing Conductive Ink


Electrical conductivity of mechanically damaged silver ink circuits is automatically restored using core–shell microcapsules. Upon mechanical damage to the circuit and microcapsules, silver particles reorganize by dissolution of the polymer binder layer upon release of solvent, hexyl acetate, from microcapsule cores. Conductivity is restored within minutes of damage, and no short-circuiting is revealed during the healing of closely spaced lines.

Roll-to-Roll Compatible Sintering of Inkjet Printed Features by Photonic and Microwave Exposure: From Non-Conductive Ink to 40% Bulk Silver Conductivity in Less Than 15 Seconds



A combination of photonic and microwave flash exposure is used to sinter inkjet printed silver nanoparticles. This approach leads to conductive features on polymer substrates in short times that are compatible with roll-to-roll production. The sequential process of sintering the as-printed features revealed a final conductivity of 40% of bulk silver, in less than 15 seconds.

Sunday, April 15, 2012

Three-Dimensional Self-Assembling of Gold Nanorods with Controlled Macroscopic Shape and Local Smectic B Order


We describe a method of controlled evaporation on a textured substrate for self-assembling and shaping gold nanorods based materials. Tridimensional wall features were formed over areas as large as several square millimeters. Furthermore, analyses by small angle X-ray scattering and scanning electron microscopy techniques demonstrated that colloids are locally ordered as a smectic B. Such crystallization was in fact possible because we could finely adjust the nanoparticle charge, a know-how which additionally enables to tune the lattice parameters. In the future, the kind of ordered self-assemblies of gold nanorods we have prepared could be used for amplifying optical signals.

Saturday, April 14, 2012


Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc)

Two new metal–organic frameworks, M2(dobpdc) (M = Zn (1), Mg (2); dobpdc4– = 4,4′-dioxido-3,3′-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg2+ cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N′-dimethylethylenediamine (mmen) to afford Mg2(dobpdc)(mmen)1.6(H2O)0.4 (mmen-Mg2(dobpdc)). This compound displays an exceptional capacity for CO2 adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO2 from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO2 capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg2(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO2 in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO2 in N2 at 40 °C. The purity of the CO2 removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO2 adsorbed. Overall, the performance characteristics of mmen-Mg2(dobpdc) indicate it to be an exceptional new adsorbent for CO2 capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.


Friday, April 13, 2012

Polymer Microparticles with Controllable Surface Textures Generated through Interfacial Instabilities of Emulsion Droplets




A general and versatile route to prepare hierarchical polymer microparticles via interfacial instabilities of emulsion droplets is demonstrated. Uniform emulsion droplets containing hydrophobic polymers and n-hexadecanol (HD) are generated through microfluidic devices. When organic solvent diffuses through the aqueous phase and evaporates, shrinking emulsion droplets containing HD and polystyrene (PS) will trigger interfacial instabilities to form microparticles with wrinkled surfaces. Interestingly, surface-textures of the particles can be accurately tailored from smooth to high textures by varying the HD concentration and/or the rate of solvent evaporation. Moreover, composite particles can be generated by suspending different hydrophobic species to the initial polymer solutions. This versatile approach for preparing particles with highly textured surfaces can be extended to other type of hydrophobic polymers which will find potential applications in the fields of drug delivery, tissue engineering, catalysis, coating, and device fabrication.
Forced generation of simple and double emulsions in all-aqueous systems


We report an easy-to-implement method that allows the direct generation of water-in-water (w/w) single emulsions. The method relies on direct perturbation of the pressure that drives the flow of the dispersed phase of the emulsions. The resultant inner jet is induced to break up into droplets due to the growth of the perturbation through Rayleigh-Plateau instability [L. Rayleigh, Proc. R. Soc. London 29, 71–97 (1879)]; this leads to the formation of monodisperse droplets. By implementing this method on a modified microfluidic device, we directly generate water-in-water-in-water (w/w/w) double emulsions with good control over the size and the number of encapsulated droplets. Our approach suggests a route to apply droplet-based microfluidics to completely water-based systems.

Thursday, April 12, 2012

Magnesium ions and alginate do form hydrogels: a rheological study

Our study shows that magnesium ions which have so far been considered as non-gelling ions for alginate do induce alginate gelation. Rheology is used to examine effects of alginate chemical composition as well as alginate and magnesium ion concentration. Gelation in this system occurs at ca. 5–10 times higher concentration of ions than reported for calcium-based gels. Alginate network formation with magnesium ions is very slow and is typically accomplished within 2–3 hours. Gelation with magnesium ions is also strongly dependent on alginate chemical composition as the presence of long guluronic units privileges faster gel formation.

Wednesday, April 11, 2012

Spider Silk Violin Strings with a Unique Packing Structure Generate a Soft and Profound Timbre

Functional Fibers with Unique Wettability Inspired by Spider Silks

Spider silk has been an attractive biopolymer since ancient times. Learning from both its excellent properties and spinning process, silk provides people with inspiration to develop functional fibers. Recently, inspired by shiny water droplets on a spider's web, we revealed that the capture silk of the cribellate spider would deform to have a special periodic spindle-knots structure and hence displayed unique wettability, making it efficient at directional water-collecting. This provides insights in designing functional fibers with unique wettability, by either creating special structures on the fiber surface, or modifying it with responsive molecules. These bioinspired functional fibers may find applications in many fields, such as water collection, smart catalysis, filtration, and sensing.

Monday, April 9, 2012

Development of Nanoparticle Stabilized Polymer Nanocontainers with High Content of the Encapsulated Active Agent and Their Application in Water-Borne Anticorrosive Coatings


A novel method for the encapsulation of organic active agents in nanoparticle-armored polymer composite nanocontainers (analog of Pickering emulsions) is introduced. The multifunctionality of the constituents allows a fabrication path that does not require auxiliary materials. Embedding the composite nanocontainers into a water-based alkyd resin and subsequent film formation yields a homogeneous polymer film doped with highly disperse composite nanocontainers. The resistance and self-healing of such a film on aluminium is enhanced.


Mechanical Writing of Ferroelectric Polarization

Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically.


We present soft, layered nanocomposites that exhibit controlled swelling anisotropy and spatially specific shape reconfigurations in response to light irradiation. The use of gold nanoparticles grafted with a temperature-responsive polymer (poly(N-isopropylacrylamide), PNIPAM) with layer-by-layer (LbL) assembly allowed placement of plasmonic structures within specific regions in the film, while exposure to light caused localized material deswelling by a photothermal mechanism. By layering PNIPAM-grafted gold nanoparticles in between nonresponsive polymer stacks, we have achieved zero Poisson’s ratio materials that exhibit reversible, light-induced unidirectional shape changes. In addition, we report rheological properties of these LbL assemblies in their equilibrium swollen states. Moreover, incorporation of dissimilar plasmonic nanostructures (solid gold nanoparticles and nanoshells) within different material strata enabled controlled shrinkage of specific regions of hydrogels at specific excitation wavelengths. The approach is applicable to a wide range of metal nanoparticles and temperature-responsive polymers and affords many advanced build-in options useful in optically manipulated functional devices, including precise control of plasmonic layer thickness, tunability of shape variations to the excitation wavelength, and programmable spatial control of optical response.

Friday, April 6, 2012



A simple, versatile approach to the directed self-assembly of block copolymers into a macroscopic array of unidirectionally aligned cylindrical microdomains on reconstructed faceted single crystal surfaces or on flexible, inexpensive polymeric replicas was discov-
ered. High fidelity transfer of the line pattern generated from the microdomains to a master mold is also shown. A single-grained line patterns over arbitrarily large surface areas without the use of top-down techniques is demonstrated, which has an order parameter typically in excess of 0.97 and a slope error of 1.1 deg. This degree of perfection, produced in a short time period, has yet to be achieved by any other methods. The exceptional alignment arises
from entropic penalties of chain packing in the facets coupled with the bending modulus of the cylindrical microdomains. This is shown, theoretically, to be the lowest energy state. The atomic crystalline ordering of the substrate is transferred, over multiple length scales, to the block copolymer microdomains, opening avenues to large-scale roll-to-roll type and nanoimprint processing of perfectly patterned surfaces and as templates and scaffolds for
magnetic storage media, polarizing devices, and nanowire arrays.
Multifunctional Lipid Multilayer Stamping


Nanostructured lipid multilayers on surfaces are a promising biofunctional nanomaterial. For example, surface-supported lipid multilayer diffraction gratings with optical properties that depend on the microscale spacing of the grating lines and the nanometer thickness of the lipid multilayers have been fabricated previously by dip-pen nanolithography (DPN), with immediate applications as label-free biosensors. The innate biocompatibility of such gratings makes them promising as biological sensor elements, model cellular systems, and construction materials for nanotechnology. Here a method is described that combines the lateral patterning capabilities and scalability of microcontact printing with the topographical control of nanoimprint lithography and the multimaterial integration aspects of dip-pen nanolithography in order to create nanostructured lipid multilayer arrays. This approach is denoted multilayer stamping. The distinguishing characteristic of this method is that it allows control of the lipid multilayer thickness, which is a crucial nanoscale dimension that determines the optical properties of lipid multilayer nanostructures. The ability to integrate multiple lipid materials on the same surface is also demonstrated by multi-ink spotting onto a polydimethoxysilane stamp, as well as higher-throughput patterning (on the order of 2 cm2 s−1 for grating fabrication) and the ability to pattern lipid materials that could not previously be patterned with high resolution by lipid DPN, for example, the gel-phase phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or the steroid cholesterol.

Synthesis of Monodisperse, Covalently Cross-Linked, Degradable “Smart” Microgels Using Microfluidics


The development of a robust method for the synthesis of highly monodisperse microgels cross-linked with degradable covalent bonds offers the potential for fabricating microgels with the highly controllable porosities, cell interactions, and degradation half-lives required for biomedical applications. A microfluidic chip is designed that enables the on-chip mixing and emulsification of two reactive polymer solutions (hydrazide and aldehyde-functionalized carbohydrates) to form monodisperse, hydrazone cross-linked microgels in the size range of ≈40–100 μm. The device can be run continuously for at least 30 h without a significant drift in particle size. The resulting microgels have a homogeneous bulk composition and can swell and deswell as the solvent conditions change in predictable ways based on the chemistry of the reactive polymers used, thereby enabling improved control over both the chemistry and morphology of the resulting microgels relative to other reported approaches. The in situ gelation chemistry used facilitates rapid microgel formation within the droplets without requiring the use of UV light or heating to initiate polymerization, thus making this approach of particular potential utility in cell encapsulation or drug delivery (as demonstrated).

Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators



The development of soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible is described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into 3D structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while being light in weight. These soft actuators can manipulate objects with moderate performance; for example, they can lift loads up to 120 times their weight. They can also be combined with other components, for example, electrical components, to increase their functionality.

Monday, April 2, 2012


Inkjet-Printed Graphene Electronics


We demonstrate inkjet printing as a viable method for large-area fabrication of graphene devices. We produce a graphene-based ink by liquid phase exfoliation of graphite in N-methylpyrrolidone. We use it to print thin-film transistors, with mobilities up to 95 cm2 V–1 s–1, as well as transparent and conductive patterns, with 80% transmittance and 30 kΩ/□ sheet resistance. This paves the way to all-printed, flexible, and transparent graphene devices on arbitrary substrates.

Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier


A brain delivery probe was prepared by covalently conjugating lactoferrin (Lf) to a poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticle in order to facilitate the transport of the nanoparticles across the blood–brain barrier (BBB) by receptor-mediated transcytosis via the Lf receptor present on cerebral endothelial cells. The efficacy of the Fe3O4-Lf conjugate to cross the BBB was evaluated in vitro using a cell culture model for the blood–brain barrier as well as in vivo in SD rats. For an in vitro experiment, a well-established porcine BBB model was used based on the primary culture of cerebral capillary endothelial cells grown on filter supports, thus allowing one to follow the transfer of nanoparticles from the apical (blood) to the basolateral (brain) side. For in vivo experiments, SD rats were used as animal model to detect the passage of the nanoparticles through the BBB by MRI techniques. The results of both in vitro and in vivo experiments revealed that the Fe3O4-Lf probe exhibited an enhanced ability to cross the BBB in comparison to the PEG-coated Fe3O4 nanoparticles and further suggested that the Lf-receptor-mediated transcytosis was an effective measure for delivering the nanoparticles across the BBB.

Sunday, April 1, 2012

Free-floating hydrogel-based rafts supporting a microarray of functional entities at fluid interfaces



In the present paper, we report a method for fabricating a macroscopic, free-floating device that supports a microarray of molecular functional entities. Therefore, the fabrication process developed by us combines bottom-up and top-down microfabrication strategies for a spatially controllable integration of molecular entities into the macroscopic device. For application, the generated device is transferred to fluid interfaces. Through a combined experimental and theoretical study, we demonstrate that the microscopic cavities of the intrinsically hydrophilic comb-shaped mesh structure enable the flotation of the device at a water–air interface of a sessile droplet due to surface tension effects. The design of the functionalized and free-floating device affords a long-term stable approach with respect to a chemical patterning of this fluid interface without loss of the lateral arrangement of the functional entities over time.