Tuesday, September 20, 2011

For Lorang


Nanowires have been widely studied and have gained a lot of interest in the past decade. Because of their high refractive index and high nonlinearity, chalcogenide glasses (ChGs) are a good candidate for the fabrication of photonic nanowires as such nanowaveguides provide the maximal confinement of light, enabling large enhancement of nonlinear interactions and group-velocity dispersion engineering. Here we report on the generation of λ/12 (68 nm) nanowires based on the theoretical and experimental study of the influence of the laser repetition rate on the direct laser fabrication in ChGs (λ = 800 nm). Through a numerical model of cumulative heating, the optimum conditions for high-resolution fabrication in As2S3 are found. Nanowires with dimensions down to λ/12 are for the first time successfully fabricated in ChGs. We show that the generated nanowires can be stacked to form a three-dimensional woodpile photonic crystal with a pronounced stop gap.

No comments: